Discovery of Selective Small-Molecule Activators of a Bacterial Glycoside Hydrolase**

نویسندگان

  • John F Darby
  • Jens Landström
  • Christian Roth
  • Yuan He
  • Gideon J Davies
  • Roderick E Hubbard
چکیده

Fragment-based approaches are used routinely to discover enzyme inhibitors as cellular tools and potential therapeutic agents. There have been few reports, however, of the discovery of small-molecule enzyme activators. Herein, we describe the discovery and characterization of small-molecule activators of a glycoside hydrolase (a bacterial O-GlcNAc hydrolase). A ligand-observed NMR screen of a library of commercially available fragments identified an enzyme activator which yielded an approximate 90 % increase in kcat /KM  values (kcat =catalytic rate constant; KM =Michaelis constant). This compound binds to the enzyme in close proximity to the catalytic center. Evolution of the initial hits led to improved compounds that behave as nonessential activators effecting both KM  and Vmax  values (Vmax =maximum rate of reaction). The compounds appear to stabilize an active "closed" form of the enzyme. Such activators could offer an orthogonal alternative to enzyme inhibitors for perturbation of enzyme activity in vivo, and could also be used for glycoside hydrolase activation in many industrial processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increase of enzyme activity through specific covalent modification with fragments.

Modulation of enzyme activity is a powerful means of probing cellular function and can be exploited for diverse applications. Here, we explore a method of enzyme activation where covalent tethering of a small molecule to an enzyme can increase catalytic activity (kcat/KM) up to 35-fold. Using a bacterial glycoside hydrolase, BtGH84, we demonstrate how small molecule "fragments", identified as a...

متن کامل

Crystal structure of unsaturated glucuronyl hydrolase complexed with substrate: molecular insights into its catalytic reaction mechanism.

Unsaturated glucuronyl hydrolase (UGL), which is a member of glycoside hydrolase family GH-88, is a bacterial enzyme that degrades mammalian glycosaminoglycans and bacterial biofilms. The enzyme, which acts on unsaturated oligosaccharides with an alpha-glycoside bond produced by microbial polysaccharide lyases responsible for bacterial invasion of host cells, was believed to release 4-deoxy-l-t...

متن کامل

Screening-based discovery of drug-like O-GlcNAcase inhibitor scaffolds

O-GlcNAcylation is an essential posttranslational modification in metazoa. Modulation of O-GlcNAc levels with small molecule inhibitors of O-GlcNAc hydrolase (OGA) is a useful strategy to probe the role of this modification in a range of cellular processes. Here we report the discovery of novel, low molecular weight and drug-like O-GlcNAcase inhibitor scaffolds by high-throughput screening. Kin...

متن کامل

Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switch...

متن کامل

Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase.

The tyrosine residue Y198 is known to support a nucleophilic water molecule with the general base residue, D263, in the reducing-end xylose-releasing exo-oligoxylanase (Rex). A mutation in the tyrosine residue changing it into phenylalanine caused a drastic decrease in the hydrolytic activity and a small increase in the F(-) releasing activity from alpha-xylobiosyl fluoride in the presence of x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014